Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276008

RESUMO

Diffuse intrinsic pontine glioma (DIPG), affecting children aged 4-7 years, is a rare, aggressive tumor that originates in the pons and then spreads to nearby tissue. DIPG is the leading cause of death for pediatric brain tumors due to its infiltrative nature and inoperability. Radiotherapy has only a palliative effect on stabilizing symptoms. In silico and preclinical studies identified ONC201 as a cytotoxic agent against some human cancer cell lines, including DIPG ones. A single-crystal X-ray analysis of the complex of the human mitochondrial caseinolytic serine protease type C (hClpP) and ONC201 (PDB ID: 6DL7) allowed hClpP to be identified as its main target. The hyperactivation of hClpP causes damage to mitochondrial oxidative phosphorylation and cell death. In some DIPG patients receiving ONC201, an acquired resistance was observed. In this context, a wide program was initiated to discover original scaffolds for new hClpP activators to treat ONC201-non-responding patients. Harmaline, a small molecule belonging to the chemical class of ß-carboline, was identified through Fingerprints for Ligands and Proteins (FLAP), a structure-based virtual screening approach. Molecular dynamics simulations and a deep in vitro investigation showed interesting information on the interaction and activation of hClpP by harmaline.

2.
Microb Cell Fact ; 22(1): 128, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443049

RESUMO

BACKGROUND: Mitochondrial carriers (MCs) can deeply affect the intracellular flux distribution of metabolic pathways. The manipulation of their expression level, to redirect the flux toward the production of a molecule of interest, is an attractive target for the metabolic engineering of eukaryotic microorganisms. The non-conventional yeast Yarrowia lipolytica is able to use a wide range of substrates. As oleaginous yeast, it directs most of the acetyl-CoA therefrom generated towards the synthesis of lipids, which occurs in the cytoplasm. Among them, the odd-chain fatty acids (OCFAs) are promising microbial-based compounds with several applications in the medical, cosmetic, chemical and agricultural industries. RESULTS: In this study, we have identified the MC involved in the Carnitine/Acetyl-Carnitine shuttle in Y. lipolytica, YlCrc1. The Y. lipolytica Ylcrc1 knock-out strain failed to grow on ethanol, acetate and oleic acid, demonstrating the fundamental role of this MC in the transport of acetyl-CoA from peroxisomes and cytoplasm into mitochondria. A metabolic engineering strategy involving the deletion of YlCRC1, and the recombinant expression of propionyl-CoA transferase from Ralstonia eutropha (RePCT), improved propionate utilization and its conversion into OCFAs. These genetic modifications and a lipogenic medium supplemented with glucose and propionate as the sole carbon sources, led to enhanced accumulation of OCFAs in Y. lipolytica. CONCLUSIONS: The Carnitine/Acetyl-Carnitine shuttle of Y. lipolytica involving YlCrc1, is the sole pathway for transporting peroxisomal or cytosolic acetyl-CoA to mitochondria. Manipulation of this carrier can be a promising target for metabolic engineering approaches involving cytosolic acetyl-CoA, as demonstrated by the effect of YlCRC1 deletion on OCFAs synthesis.


Assuntos
Carnitina , Yarrowia , Acetilcoenzima A/metabolismo , Carnitina/metabolismo , Acetilcarnitina/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Ácidos Graxos/metabolismo , Propionatos/metabolismo , Mitocôndrias/metabolismo , Engenharia Metabólica
3.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982394

RESUMO

Mitochondrial RTG (an acronym for ReTroGrade) signaling plays a cytoprotective role under various intracellular or environmental stresses. We have previously shown its contribution to osmoadaptation and capacity to sustain mitochondrial respiration in yeast. Here, we studied the interplay between RTG2, the main positive regulator of the RTG pathway, and HAP4, encoding the catalytic subunit of the Hap2-5 complex required for the expression of many mitochondrial proteins that function in the tricarboxylic acid (TCA) cycle and electron transport, upon osmotic stress. Cell growth features, mitochondrial respiratory competence, retrograde signaling activation, and TCA cycle gene expression were comparatively evaluated in wild type and mutant cells in the presence and in the absence of salt stress. We showed that the inactivation of HAP4 improved the kinetics of osmoadaptation by eliciting both the activation of retrograde signaling and the upregulation of three TCA cycle genes: citrate synthase 1 (CIT1), aconitase 1 (ACO1), and isocitrate dehydrogenase 1 (IDH1). Interestingly, their increased expression was mostly dependent on RTG2. Impaired respiratory competence in the HAP4 mutant does not affect its faster adaptive response to stress. These findings indicate that the involvement of the RTG pathway in osmostress is fostered in a cellular context of constitutively reduced respiratory capacity. Moreover, it is evident that the RTG pathway mediates peroxisomes-mitochondria communication by modulating the metabolic function of mitochondria in osmoadaptation.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ciclo do Ácido Cítrico/genética , Citrato (si)-Sintase/metabolismo , Transdução de Sinais , Regulação Fúngica da Expressão Gênica
4.
Biomolecules ; 11(11)2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34827632

RESUMO

Neuromuscular diseases (NMDs) are dysfunctions that involve skeletal muscle and cause incorrect communication between the nerves and muscles. The specific causes of NMDs are not well known, but most of them are caused by genetic mutations. NMDs are generally progressive and entail muscle weakness and fatigue. Muscular impairments can differ in onset, severity, prognosis, and phenotype. A multitude of possible injury sites can make diagnosis of NMDs difficult. Mitochondria are crucial for cellular homeostasis and are involved in various metabolic pathways; for this reason, their dysfunction can lead to the development of different pathologies, including NMDs. Most NMDs due to mitochondrial dysfunction have been associated with mutations of genes involved in mitochondrial biogenesis and metabolism. This review is focused on some mitochondrial routes such as the TCA cycle, OXPHOS, and ß-oxidation, recently found to be altered in NMDs. Particular attention is given to the alterations found in some genes encoding mitochondrial carriers, proteins of the inner mitochondrial membrane able to exchange metabolites between mitochondria and the cytosol. Briefly, we discuss possible strategies used to diagnose NMDs and therapies able to promote patient outcome.


Assuntos
Proteínas Mitocondriais/metabolismo , Doenças Neuromusculares/metabolismo , Animais , Transporte de Elétrons/genética , Humanos , Modelos Biológicos , Mutação/genética , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/enzimologia , Fenótipo
5.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576089

RESUMO

SLC25A36 is a pyrimidine nucleotide carrier playing an important role in maintaining mitochondrial biogenesis. Deficiencies in SLC25A36 in mouse embryonic stem cells have been associated with mtDNA depletion as well as mitochondrial dysfunction. In human beings, diseases triggered by SLC25A36 mutations have not been described yet. We report the first known case of SLC25A36 deficiency in a 12-year-old patient with hypothyroidism, hyperinsulinism, hyperammonemia, chronical obstipation, short stature, along with language and general developmental delay. Whole exome analysis identified the homozygous mutation c.803dupT, p.Ser269llefs*35 in the SLC25A36 gene. Functional analysis of mutant SLC25A36 protein in proteoliposomes showed a virtually abolished transport activity. Immunoblotting results suggest that the mutant SLC25A36 protein in the patient undergoes fast degradation. Supplementation with oral uridine led to an improvement of thyroid function and obstipation, increase of growth and developmental progress. Our findings suggest an important role of SLC25A36 in hormonal regulations and oral uridine as a safe and effective treatment.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial/deficiência , Uridina/uso terapêutico , Criança , Pré-Escolar , Feminino , Crescimento e Desenvolvimento/efeitos dos fármacos , Humanos , Lactente , Recém-Nascido , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mutantes/metabolismo , Transporte Proteico/efeitos dos fármacos , Tireotropina/metabolismo , Uridina/farmacologia
6.
Microorganisms ; 9(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34576788

RESUMO

Mitochondrial RTG-dependent retrograde signaling, whose regulators have been characterized in Saccharomyces cerevisiae, plays a recognized role under various environmental stresses. Of special significance, the activity of the transcriptional complex Rtg1/3 has been shown to be modulated by Hog1, the master regulator of the high osmolarity glycerol pathway, in response to osmotic stress. The present work focuses on the role of RTG signaling in salt-induced osmotic stress and its interaction with HOG1. Wild-type and mutant cells, lacking HOG1 and/or RTG genes, are compared with respect to cell growth features, retrograde signaling activation and mitochondrial function in the presence and in the absence of high osmostress. We show that RTG2, the main upstream regulator of the RTG pathway, contributes to osmoadaptation in an HOG1-dependent manner and that, with RTG3, it is notably involved in a late phase of growth. Our data demonstrate that impairment of RTG signaling causes a decrease in mitochondrial respiratory capacity exclusively under osmostress. Overall, these results suggest that HOG1 and the RTG pathway may interact sequentially in the stress signaling cascade and that the RTG pathway may play a role in inter-organellar metabolic communication for osmoadaptation.

7.
Metab Eng ; 65: 156-166, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33161142

RESUMO

During cultivation under nitrogen starvation, Yarrowia lipolytica produces a mixture of citric acid and isocitric acid whose ratio is mainly determined by the carbon source used. We report that mitochondrial succinate-fumarate carrier YlSfc1 controls isocitric acid efflux from mitochondria. YlSfc1 purified and reconstituted into liposomes transports succinate, fumarate, oxaloacetate, isocitrate and α-ketoglutarate. YlSFC1 overexpression determined the inversion of isocitric acid/citric acid ratio towards isocitric acid, resulting in 33.4 ± 1.9 g/L and 43.3 ± 2.8 g/L of ICA production in test-tube cultivation with glucose and glycerol, respectively. These titers represent a 4.0 and 6.3-fold increase compared to the wild type. YlSFC1 gene expression was repressed in the wild type strain grown in glucose-based medium compared to olive oil medium explaining the reason for the preferred citric acid production during Y. lipolytica growth on carbohydrates. Coexpression of YlSFC1 and adenosine monophosphate deaminase YlAMPD genes together with inactivation of citrate mitochondrial carrier YlYHM2 gene enhanced isocitric acid accumulation up to 41.4 ± 4.1 g/L with an isocitric acid/citric acid ratio of 14.3 in a small-scale cultivation with glucose as a carbon source. During large-scale cultivation with glucose pulse-feeding, the engineered strain produced 136.7 ± 2.5 g/L of ICA with a process selectivity of 88.1%, the highest reported titer and selectivity to date. These results represent the first reported isocitric acid secretion by Y. lipolytica as a main organic acid during cultivation on carbohydrate. Moreover, we demonstrate for the first time that the replacement of one mitochondrial transport system for another can be an efficient tool for switching product accumulation.


Assuntos
Yarrowia , Transportadores de Ácidos Dicarboxílicos/genética , Isocitratos , Mitocôndrias/genética , Yarrowia/genética
8.
Nat Commun ; 11(1): 6145, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33262325

RESUMO

About a thousand genes in the human genome encode for membrane transporters. Among these, several solute carrier proteins (SLCs), representing the largest group of transporters, are still orphan and lack functional characterization. We reasoned that assessing genetic interactions among SLCs may be an efficient way to obtain functional information allowing their deorphanization. Here we describe a network of strong genetic interactions indicating a contribution to mitochondrial respiration and redox metabolism for SLC25A51/MCART1, an uncharacterized member of the SLC25 family of transporters. Through a combination of metabolomics, genomics and genetics approaches, we demonstrate a role for SLC25A51 as enabler of mitochondrial import of NAD, showcasing the potential of genetic interaction-driven functional gene deorphanization.


Assuntos
Epistasia Genética , Mitocôndrias/metabolismo , NAD/metabolismo , Proteína Desacopladora 1/metabolismo , Transporte Biológico , Humanos , Mitocôndrias/genética , Oxirredução , Proteína Desacopladora 1/genética
9.
Nat Metab ; 2(12): 1373-1381, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33230296

RESUMO

The oncogenic KRAS mutation has a critical role in the initiation of human pancreatic ductal adenocarcinoma (PDAC) since it rewires glutamine metabolism to increase reduced nicotinamide adenine dinucleotide phosphate (NADPH) production, balancing cellular redox homeostasis with macromolecular synthesis1,2. Mitochondrial glutamine-derived aspartate must be transported into the cytosol to generate metabolic precursors for NADPH production2. The mitochondrial transporter responsible for this aspartate efflux has remained elusive. Here, we show that mitochondrial uncoupling protein 2 (UCP2) catalyses this transport and promotes tumour growth. UCP2-silenced KRASmut cell lines display decreased glutaminolysis, lower NADPH/NADP+ and glutathione/glutathione disulfide ratios and higher reactive oxygen species levels compared to wild-type counterparts. UCP2 silencing reduces glutaminolysis also in KRASWT PDAC cells but does not affect their redox homeostasis or proliferation rates. In vitro and in vivo, UCP2 silencing strongly suppresses KRASmut PDAC cell growth. Collectively, these results demonstrate that UCP2 plays a vital role in PDAC, since its aspartate transport activity connects the mitochondrial and cytosolic reactions necessary for KRASmut rewired glutamine metabolism2, and thus it should be considered a key metabolic target for the treatment of this refractory tumour.


Assuntos
Ácido Aspártico/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Glutamina/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteína Desacopladora 2/metabolismo , Animais , Transporte Biológico Ativo , Linhagem Celular Tumoral , Citosol/metabolismo , Feminino , Humanos , Camundongos , Camundongos SCID , Mitocôndrias/metabolismo , NADP/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Plant Cell Environ ; 43(11): 2727-2742, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32876347

RESUMO

Heat stress (HS), causing impairment in several physiological processes, is one of the most damaging environmental cues for plants. To counteract the harmful effects of high temperatures, plants activate complex signalling networks, indicated as HS response (HSR). Expression of heat shock proteins (HSPs) and adjustment of redox homeostasis are crucial events of HSR, required for thermotolerance. By pharmacological approaches, the involvement of cAMP in triggering plant HSR has been recently proposed. In this study, to investigate the role of cAMP in HSR signalling, tobacco BY-2 cells overexpressing the 'cAMP-sponge', a genetic tool that reduces intracellular cAMP levels, have been used. in vivo cAMP dampening increased HS susceptibility in a HSPs-independent way. The failure in cAMP elevation during HS caused a high accumulation of reactive oxygen species, due to increased levels of respiratory burst oxidase homolog D, decreased activities of catalase and ascorbate peroxidase, as well as down-accumulation of proteins involved in the control of redox homeostasis. In addition, cAMP deficiency impaired proteasome activity and prevented the accumulation of many proteins of ubiquitin-proteasome system (UPS). By a large-scale proteomic approach together with in silico analyses, these UPS proteins were identified in a specific cAMP-dependent network of HSR.


Assuntos
AMP Cíclico/fisiologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteostase/fisiologia , AMP Cíclico/metabolismo , Resposta ao Choque Térmico , Oxirredução , Peptídeo Hidrolases/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , /fisiologia , Ubiquitina/metabolismo
11.
Biomolecules ; 10(4)2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340404

RESUMO

In the 1980s, after the mitochondrial DNA (mtDNA) had been sequenced, several diseases resulting from mtDNA mutations emerged. Later, numerous disorders caused by mutations in the nuclear genes encoding mitochondrial proteins were found. A group of these diseases are due to defects of mitochondrial carriers, a family of proteins named solute carrier family 25 (SLC25), that transport a variety of solutes such as the reagents of ATP synthase (ATP, ADP, and phosphate), tricarboxylic acid cycle intermediates, cofactors, amino acids, and carnitine esters of fatty acids. The disease-causing mutations disclosed in mitochondrial carriers range from point mutations, which are often localized in the substrate translocation pore of the carrier, to large deletions and insertions. The biochemical consequences of deficient transport are the compartmentalized accumulation of the substrates and dysfunctional mitochondrial and cellular metabolism, which frequently develop into various forms of myopathy, encephalopathy, or neuropathy. Examples of diseases, due to mitochondrial carrier mutations are: combined D-2- and L-2-hydroxyglutaric aciduria, carnitine-acylcarnitine carrier deficiency, hyperornithinemia-hyperammonemia-homocitrillinuria (HHH) syndrome, early infantile epileptic encephalopathy type 3, Amish microcephaly, aspartate/glutamate isoform 1 deficiency, congenital sideroblastic anemia, Fontaine progeroid syndrome, and citrullinemia type II. Here, we review all the mitochondrial carrier-related diseases known until now, focusing on the connections between the molecular basis, altered metabolism, and phenotypes of these inherited disorders.


Assuntos
Doença/genética , Proteínas Mitocondriais/genética , Mutação/genética , Sequência de Aminoácidos , Humanos , Proteínas Mitocondriais/química , Modelos Moleculares , Herança Multifatorial/genética
12.
FEBS Lett ; 594(4): 728-739, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31642516

RESUMO

Itaconic acid (IA) is a naturally occurring dicarboxylic acid with applications in the manufacture of polymers. IA can be produced by fermentation using the fungi Aspergillus terreus or Ustilago maydis as biocatalysts. Indirect evidence has suggested that the mitochondrial carriers U. maydis Um_Mtt1 and A. terreus At_MttA export mitochondrially synthesized cis-aconitate to the cytosol for IA synthesis using malate as a countersubstrate. Here, by assaying the transport features of recombinant Um_Mtt1 and At_MttA in reconstituted liposomes, we find that both proteins efficiently transport cis-aconitate, but malate is well transported only by Um_Mtt1 and 2-oxoglutarate only by At_MttA. Bioinformatic analysis shows that Um_Mtt1 and At_MttA form a distinctive mitochondrial carrier subfamily. Our data show that although fulfilling the same physiological task, Um_Mtt1 and At_MttA have different biochemical features.


Assuntos
Aspergillus/citologia , Mitocôndrias/metabolismo , Succinatos/metabolismo , Ustilago/citologia , Sequência de Aminoácidos , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Cinética
13.
Metab Eng ; 54: 264-274, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31071446

RESUMO

Mitochondrial citrate carrier plays a central role in exporting acetyl-CoA in the form of citrate from mitochondria to cytosol thereby connecting carbohydrate catabolism and lipogenesis. In this study, Yarrowia lipolytica mitochondrial citrate carrier was functionally defined and characterized. Firstly, deletion of Y. lipolytica YlCTP1 and YlYHM2 genes coding putative tricarboxylate mitochondrial carriers were performed. ΔYlctp1 strain did not differ significantly from wild type strain in terms of growth rate, organic acids and lipid production. In contrast, ΔYlyhm2 strain did not grow in liquid citrate-containing minimal medium. Moreover, in glucose-containing lipogenic medium YlYHM2 null mutant strain did not produce citric acid; the production of isocitric acid and lipids were decreased. Reintroduction of YlYHM2 gene as well as heterologous expression of Aspergillus niger gene AnYHM2 into ΔYlyhm2 strain restored the growth in minimal citrate medium and even enhanced citric acid production by 45% in both variants compared with wild type strain during test tube cultivation. Mitochondrial extracts isolated from YlYHM2 null mutant and wild type strain were incorporated into liposomes; citrate/citrate and α-ketoglutarate/α-ketoglutarate homoexchange activities were reduced by 87% and 40% in ΔYlyhm2 strain, respectively, compared with the wild type, whereas citratein/α-ketoglutarateout and α-ketoglutaratein/citrateout heteroexchanges were decreased by 87% and 95%, respectively. YlYhm2p was expressed in Escherichia coli, purified and reconstituted into liposomes. Besides high efficiency to citrate and α-ketoglutarate transport, YlYhm2p also transported oxaloacetate, succinate, fumarate, and to a much lesser extent, aconitate, malate, isocitrate, oxoadipate, and glutamate. The activity of reconstituted YlYhm2p was inhibited strongly by SH-blocking reagents, pyridoxal-5'-phosphate, and partly by N-ethylmaleimide. Co-expression of YlYHM2 and adenosine monophosphate deaminase YlAMPD genes resulted in the production of 49.7 g/L of citric acid during test tube cultivation, whereas wild type strain accumulated 30.1 g/L of citric acid. Large-scale cultivation in bioreactor of the engineered strain resulted in 97.1 g/L of citric acid production with a process selectivity of 94.2% and an overall citric acid yield of 0.5 g/g. The maximal specific rate of citric acid synthesis was 0.93 g/L/h. Therefore, the physiological role of YlYhm2p in glucose-containing medium is to catalyze both import of citrate into mitochondria for catabolic reactions and export of citrate as a source of acetyl-CoA from mitochondria. Possible shuttles for citrate exporting are discussed. Moreover, for the first time evidence has been given for the improvement of TCA cycle intermediate production by manipulation of a gene coding a mitochondrial carrier.


Assuntos
Proteínas de Transporte , Proteínas Fúngicas , Mitocôndrias , Proteínas Mitocondriais , Yarrowia , Aspergillus niger/genética , Aspergillus niger/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ciclo do Ácido Cítrico/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Yarrowia/genética , Yarrowia/metabolismo
14.
Biochim Biophys Acta Mol Cell Res ; 1865(12): 1901-1913, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30290237

RESUMO

Mitochondria play essential metabolic functions in eukaryotes. Although their major role is the generation of energy in the form of ATP, they are also involved in maintenance of cellular redox state, conversion and biosynthesis of metabolites and signal transduction. Most mitochondrial functions are conserved in eukaryotic systems and mitochondrial dysfunctions trigger several human diseases. By using multi-omics approach, we investigate the effect of methionine supplementation on yeast cellular metabolism, considering its role in the regulation of key cellular processes. Methionine supplementation induces an up-regulation of proteins related to mitochondrial functions such as TCA cycle, electron transport chain and respiration, combined with an enhancement of mitochondrial pyruvate uptake and TCA cycle activity. This metabolic signature is more noticeable in cells lacking Snf1/AMPK, the conserved signalling regulator of energy homeostasis. Remarkably, snf1Δ cells strongly depend on mitochondrial respiration and suppression of pyruvate transport is detrimental for this mutant in methionine condition, indicating that respiration mostly relies on pyruvate flux into mitochondrial pathways. These data provide new insights into the regulation of mitochondrial metabolism and extends our understanding on the role of methionine in regulating energy signalling pathways.


Assuntos
Metionina/metabolismo , Mitocôndrias/metabolismo , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transporte Biológico , Metabolômica/métodos , Mutação , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Pirúvico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
15.
Biochim Biophys Acta Mol Basis Dis ; 1864(9 Pt B): 3050-3059, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29953926

RESUMO

Monoamine oxidase (MAO), a mitochondrial enzyme that oxidizes biogenic amines generating hydrogen peroxide, is a major source of oxidative stress in cardiac injury. However, the molecular mechanisms underlying its overactivation in pathological conditions are still poorly characterized. Here, we investigated whether the enhanced MAO-dependent hydrogen peroxide production can be due to increased substrate availability using a metabolomic profiling method. We identified N1-methylhistamine -the main catabolite of histamine- as an important substrate fueling MAO in Langendorff mouse hearts, directly perfused with a buffer containing hydrogen peroxide or subjected to ischemia/reperfusion protocol. Indeed, when these hearts were pretreated with the MAO inhibitor pargyline we observed N1-methylhistamine accumulation along with reduced oxidative stress. Next, we showed that synaptic terminals are the major source of N1-methylhistamine. Indeed, in vivo sympathectomy caused a decrease of N1-methylhistamine levels, which was associated with a marked protection in post-ischemic reperfused hearts. As far as the mechanism is concerned, we demonstrate that exogenous histamine is transported into isolated cardiomyocytes and triggers a rise in the levels of reactive oxygen species (ROS). Once again, pargyline pretreatment induced intracellular accumulation of N1-methylhistamine along with decrease in ROS levels. These findings uncover a receptor-independent mechanism for histamine in cardiomyocytes. In summary, our study reveals a novel and important pathophysiological causative link between MAO activation and histamine availability during pathophysiological conditions such as oxidative stress/cardiac injury.


Assuntos
Ventrículos do Coração/patologia , Histamina/metabolismo , Monoaminoxidase/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Animais , Modelos Animais de Doenças , Ventrículos do Coração/citologia , Humanos , Preparação de Coração Isolado , Masculino , Metabolômica , Metilistaminas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Traumatismo por Reperfusão Miocárdica/etiologia , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Oxirredução , Estresse Oxidativo , Pargilina/farmacologia , Espécies Reativas de Oxigênio/metabolismo
16.
J Inherit Metab Dis ; 41(2): 169-180, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29238895

RESUMO

Combined D-2- and L-2-hydroxyglutaric aciduria (D/L-2-HGA) is a devastating neurometabolic disorder, usually lethal in the first years of life. Autosomal recessive mutations in the SLC25A1 gene, which encodes the mitochondrial citrate carrier (CIC), were previously detected in patients affected with combined D/L-2-HGA. We showed that transfection of deficient fibroblasts with wild-type SLC25A1 restored citrate efflux and decreased intracellular 2-hydroxyglutarate levels, confirming that deficient CIC is the cause of D/L-2-HGA. We developed and implemented a functional assay and applied it to all 17 missense variants detected in a total of 26 CIC-deficient patients, including eight novel cases, showing reduced activities of varying degrees. In addition, we analyzed the importance of residues affected by these missense variants using our existing scoring system. This allowed not only a clinical and biochemical overview of the D/L-2-HGA patients but also phenotype-genotype correlation studies.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Encefalopatias Metabólicas Congênitas/metabolismo , Ácido Cítrico/metabolismo , Glutaratos/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/genética , Bioensaio/métodos , Encefalopatias Metabólicas Congênitas/genética , Células Cultivadas , Pré-Escolar , Análise Mutacional de DNA , Feminino , Fibroblastos , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Transportadores de Ânions Orgânicos , Fenótipo , Conformação Proteica , Relação Estrutura-Atividade
17.
Hum Mol Genet ; 27(3): 499-504, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29211846

RESUMO

Mitochondrial diseases are a plethora of inherited neuromuscular disorders sharing defects in mitochondrial respiration, but largely different from one another for genetic basis and pathogenic mechanism. Whole exome sequencing was performed in a familiar trio (trio-WES) with a child affected by severe epileptic encephalopathy associated with respiratory complex I deficiency and mitochondrial DNA depletion in skeletal muscle. By trio-WES we identified biallelic mutations in SLC25A10, a nuclear gene encoding a member of the mitochondrial carrier family. Genetic and functional analyses conducted on patient fibroblasts showed that SLC25A10 mutations are associated with reduction in RNA quantity and aberrant RNA splicing, and to absence of SLC25A10 protein and its transporting function. The yeast SLC25A10 ortholog knockout strain showed defects in mitochondrial respiration and mitochondrial DNA content, similarly to what observed in the patient skeletal muscle, and growth susceptibility to oxidative stress. Albeit patient fibroblasts were depleted in the main antioxidant molecules NADPH and glutathione, transport assays demonstrated that SLC25A10 is unable to transport glutathione. Here, we report the first recessive mutations of SLC25A10 associated to an inherited severe mitochondrial neurodegenerative disorder. We propose that SLC25A10 loss-of-function causes pathological disarrangements in respiratory-demanding conditions and oxidative stress vulnerability.


Assuntos
Encefalopatias/genética , Encefalopatias/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mutação/genética , Antioxidantes/metabolismo , Criança , DNA Mitocondrial/genética , Heterozigoto , Humanos , Masculino , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo/genética , Linhagem , Splicing de RNA/genética
18.
Proc Natl Acad Sci U S A ; 111(3): 960-5, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24395786

RESUMO

Uncoupling protein 2 (UCP2) is involved in various physiological and pathological processes such as insulin secretion, stem cell differentiation, cancer, and aging. However, its biochemical and physiological function is still under debate. Here we show that UCP2 is a metabolite transporter that regulates substrate oxidation in mitochondria. To shed light on its biochemical role, we first studied the effects of its silencing on the mitochondrial oxidation of glucose and glutamine. Compared with wild-type, UCP2-silenced human hepatocellular carcinoma (HepG2) cells, grown in the presence of glucose, showed a higher inner mitochondrial membrane potential and ATP:ADP ratio associated with a lower lactate release. Opposite results were obtained in the presence of glutamine instead of glucose. UCP2 reconstituted in lipid vesicles catalyzed the exchange of malate, oxaloacetate, and aspartate for phosphate plus a proton from opposite sides of the membrane. The higher levels of citric acid cycle intermediates found in the mitochondria of siUCP2-HepG2 cells compared with those found in wild-type cells in addition to the transport data indicate that, by exporting C4 compounds out of mitochondria, UCP2 limits the oxidation of acetyl-CoA-producing substrates such as glucose and enhances glutaminolysis, preventing the mitochondrial accumulation of C4 metabolites derived from glutamine. Our work reveals a unique regulatory mechanism in cell bioenergetics and provokes a substantial reconsideration of the physiological and pathological functions ascribed to UCP2 based on its purported uncoupling properties.


Assuntos
Carbono/química , Glucose/metabolismo , Glutamina/metabolismo , Canais Iônicos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Oxigênio/química , Catálise , Respiração Celular/fisiologia , Ciclo do Ácido Cítrico , Metabolismo Energético , Inativação Gênica , Células HEK293 , Células Hep G2 , Humanos , Lipossomos/química , Potencial da Membrana Mitocondrial , Ácido Oxaloacético/metabolismo , Consumo de Oxigênio , Fosfatos/química , Proteína Desacopladora 2
19.
J Neuromuscul Dis ; 1(1): 75-90, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26870663

RESUMO

BACKGROUND AND OBJECTIVE: Congenital myasthenic syndromes are rare inherited disorders characterized by fatigable weakness caused by malfunction of the neuromuscular junction. We performed whole exome sequencing to unravel the genetic aetiology in an English sib pair with clinical features suggestive of congenital myasthenia. METHODS: We used homozygosity mapping and whole exome sequencing to identify the candidate gene variants. Mutant protein expression and function were assessed in vitro and a knockdown zebrafish model was generated to assess neuromuscular junction development. RESULTS: We identified a novel homozygous missense mutation in the SLC25A1 gene, encoding the mitochondrial citrate carrier. Mutant SLC25A1 showed abnormal carrier function. SLC25A1 has recently been linked to a severe, often lethal clinical phenotype. Our patients had a milder phenotype presenting primarily as a neuromuscular (NMJ) junction defect. Of note, a previously reported patient with different compound heterozygous missense mutations of SLC25A1 has since been shown to suffer from a neuromuscular transmission defect. Using knockdown of SLC25A1 expression in zebrafish, we were able to mirror the human disease in terms of variable brain, eye and cardiac involvement. Importantly, we show clear abnormalities in the neuromuscular junction, regardless of the severity of the phenotype. CONCLUSIONS: Based on the axonal outgrowth defects seen in SLC25A1 knockdown zebrafish, we hypothesize that the neuromuscular junction impairment may be related to pre-synaptic nerve terminal abnormalities. Our findings highlight the complex machinery required to ensure efficient neuromuscular function, beyond the proteomes exclusive to the neuromuscular synapse.

20.
PLoS One ; 8(12): e82364, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24349266

RESUMO

Chronic exposure of ß-cells to metabolic stresses impairs their function and potentially induces apoptosis. Mitochondria play a central role in coupling glucose metabolism to insulin secretion. However, little is known on mitochondrial responses to specific stresses; i.e. low versus high glucose, saturated versus unsaturated fatty acids, or oxidative stress. INS-1E cells were exposed for 3 days to 5.6 mM glucose, 25 mM glucose, 0.4 mM palmitate, and 0.4 mM oleate. Culture at standard 11.1 mM glucose served as no-stress control and transient oxidative stress (200 µM H2O2 for 10 min at day 0) served as positive stressful condition. Mito-array analyzed transcripts of 60 mitochondrion-associated genes with special focus on members of the Slc25 family. Transcripts of interest were evaluated at the protein level by immunoblotting. Bioinformatics analyzed the expression profiles to delineate comprehensive networks. Chronic exposure to the different metabolic stresses impaired glucose-stimulated insulin secretion; revealing glucotoxicity and lipo-dysfunction. Both saturated and unsaturated fatty acids increased expression of the carnitine/acylcarnitine carrier CAC, whereas the citrate carrier CIC and energy sensor SIRT1 were specifically upregulated by palmitate and oleate, respectively. High glucose upregulated CIC, the dicarboxylate carrier DIC and glutamate carrier GC1. Conversely, it reduced expression of energy sensors (AMPK, SIRT1, SIRT4), metabolic genes, transcription factor PDX1, and anti-apoptotic Bcl2. This was associated with caspase-3 cleavage and cell death. Expression levels of GC1 and SIRT4 exhibited positive and negative glucose dose-response, respectively. Expression profiles of energy sensors and mitochondrial carriers were selectively modified by the different conditions, exhibiting stress-specific signatures.


Assuntos
Ácidos Graxos/farmacologia , Perfilação da Expressão Gênica , Glucose/farmacologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Estresse Fisiológico/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Carnitina/análogos & derivados , Carnitina/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , DNA/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Insulina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Mitocôndrias/efeitos dos fármacos , Proteínas Mitocondriais/genética , Fosforilação Oxidativa/efeitos dos fármacos , Subunidades Proteicas/metabolismo , Proteoma/metabolismo , Ratos , Estresse Fisiológico/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...